Visual Programming meets Tangible Interfaces

Generating city simulations for decision support in early design stages

Gerhard Schubert!, Ivan Bratoev?, Frank Petzold®
123 Technische Universitit Miinchen / Chair for Architectural Informatics
123 fschubert|ivan.bratoev|petzold)@tum.de

The utilization of visual programming languages (VPL) as tools for generating
complex simulations has seen a constant increase in application in architect
planning phases. The major advantage of such languages is, that they enable the
user to create programs without needing traditional software development skills.
In the last few years the CDP // Collaborative Design Platform was developed
that seamlessly connects physical models with analyses and simulations in
real-time. To facilitate an easier creation, modification and user interaction with
the individual simulations, a VPL and an accompanying IDE were conceptualized
and developed. In the context of this paper the core requirements, the concept and
prototypical implementation of these new components are described in detail.

Keywords: visual programming language, tangible interface, simulation, urban

planning

INTRODUCTION
Increasing requirements for architectural tasks, com-
bined with a rapidly growing project size, lead to
more complex conditions and connections in the
planning and decision-making process. This applies
to both, the conceptual urban planning phases, as
well as to subsequent decision-making processes at
the building scale. This rapidly changing situation
requires totally new approaches and answers with
regard to the design, planning and communication
process. These changes do not only have an impact
on the processes that are taking place, but also di-
rectly on the design and communication tools used.
The focus here is on the question how the effects
of architectural and planning decisions can be made
clear during the conceptual design phases, while at

the same time an individual adaptation of the tools
to the different design- problems is possible.

In addition to the consideration of established
working methods and the tools used for design-
thinking and design-working, the focus is primarily
on the investigation of the digital methods that can
be transferred to the conceptual planning context
- the keyword is: Design Decision Support. A so-
lution approach can therefore be found in the di-
rect integration of decision-support tools like analy-
ses and simulations into the early, creative planning-
and design-process. In this way it is possible to visu-
alize the effects of planning decisions directly and in
early phases - both for decision-makers, as well as af-
fected citizens or other stakeholders.

CITY MODELLING TOOLS - Volume 1 - eCAADe 35 | 515

In order to meet the individual requirements of ar-
chitectural design questions as well as solution ap-
proaches, in addition to the direct integration into
the work process, a simple, flexible creation and
adaptation of the analytical methods to the particu-
lar application is a prerequisite for such a system.

CONCEPT

Taking into account the situation just described,
the proposed method / prototype provides an intu-
itive, collaborative design platform coupled with ad-
vanced, real time computer analyses and simulations
- easy to create and adjust. Starting from the require-
ments in the architectural planning process and in
the context of decision-support tools, two relevant
requirements for decision support systems within the
scope of architectural design tools for the exploration
of ideas in a creative context can be identified:

+ Direct embedding in the creative thinking
process: The use of simulations and analyzes
nowadays occurs almost exclusively in later
planning phases - usually only for the verifi-
cation of one or several already made deci-
sions. This creates a linear process of “gener-
ating ideas’, “detailing ideas” and final “evalu-
ation” of these, without a direct feedback into
the design process and thus without impact
on the planning decision. In order to pro-
vide a direct feedback of analyzes and sim-
ulations into the thinking process, a seam-
less embedding of these in the design pro-
cess is required, in order to bridge the ex-
isting gap between established design tools
and digitally supporting tools (simulations +
analyzes). In that way, an integrated de-
cision support can be implemented directly
in the planning process and the existing lin-
ear sequence can be replaced by a circular,
decision-supported thinking process.

Easily creation and customization of the tools:
Each design task, design approach or concept
is characterized by different requirements and
premises. This means that the parameters to

516 | eCAADe 35 - CITY MODELLING TOOLS - Volume 1

be checked by the analyses and simulations
can not be determined absolutely universally.
Rather, an individual system has to be used,
which allows both: the simple creation and
the easy adaptation of the necessary analy-
sis tools. In this way, a flexible response to
the most diverse requirements in the archi-
tectural design processes is made possible.
One approach can be seen here in the applica-
tion of a VPL (Visual Programming Language)
as a simple, code-free method of implement-
ing different user-specific analyzes and simu-
lations.

RELATED WORK

The concept of utilizing visual languages for pro-
gramming purposes is not a new phenomenon. A
few VPLs and their environments where selected,
based on their already commercial use in the field of
architecture or their theoretical potential. They were
observed and analyzed how they solve issues during
the different types of validation.

Grasshopper (1) is one such tool, which is widely
utilized for parametric modelling, lighting perfor-
mance analysis and other similar evaluations that ar-
chitects traditionally utilize during the design stages.
Grasshopper offers a very intuitive way to utilize even
the most complex features that it offers. By the inte-
gration of individual plugins the functionality is easily
extendable. (see Figure 1)

A similar tool is Revit's Dynamo (2). It focuses
on utilizing not just geometry objects, but applying
the building information modeling (BIM) on top of
the shapes. With the rise in popularity of the tool
it started integrating cross-platform features to work
directly with Grasshopper or to directly use the same
third party tools its counterpart does (Kensek 2015).
(see Figure 1)

VCCL (Preidel and Bormann 2015) is a VPL used
to define building codes and guidelines for construc-
tion projects. It then uses it's development environ-
ment to continuously validate the current construc-
tion project if it fulfills these requirements in real

Figure 1

System setup: CDP
// Collaborative
Design Platform (A)
- Physical models
(1) on a multi touch
table (2) are
digitally
reconstructed in 3D
and realtime and
serve as the
simulation-base.
Visual
Programming
Interface (B) - Easy
setup and
adjustment of
analyses and
simulations (e.g.
noise) via nodes.
The output of the
calculations is
displayed on the
table-surface (2)
and thus within the
physical model (1).

time. The language offers also the possibility to vi-
sualize intermediate results of the validation process,
which enables the user to highlight the parts of the
project that directly violate said rules.

The USP (Seifert and Mihlhaus 2014) focuses on
building regulations as well. Its primary goals is to
observer how changes to those regulation would af-
fect potential existing buildings. This is achieved
through a two mode environment, the first part con-
sisting of a VPL that allows users to define any regu-
lations that they want to observe and the ways they
want to modify them. The second mode interprets
the context of the programmed regulations and vi-
sualizes them. These rule sets can be then applied to
any concrete model that the environment supports.

One issue that all of the above mentioned VPLs
and their development environment share, is that
they utilize only the traditional ways of receiving in-
put from the user. All construction projects and
buildings are defined digitally either through preex-

isting files or through the tools themselves. This is in
stark contrast to the way architects work during the
early design stages, where physical objects are used
to represent buildings and concepts. The proposed
VPL attempts to bridge this gap between the physical
models and digital real-time interactive simulations.

SYSTEM SETUP

Based on the presented requirements a two-part sys-
tem architecture was conceptualised and developed
as a part of a research project.

CDP / Design Platform

The basis of the project is an interactive design and
communication platform for early urban develop-
ment phases (e.g. scale 1:500 / 1:1000) that was
conceived and implemented in the past few years
(Schubert 2014). The focus is on the direct coupling
of physical work models with interactive simulations

CITY MODELLING TOOLS - Volume 1 - eCAADe 35 | 517

based on a tangible interface. The physical model
becomes the basis for the simulation: changes of
the model (repositioning, cutting, rotating) have a di-
rect influence on the analyses and simulations in real
time. The calculation results are displayed in real-
time in the physical model, adding additional layers
of information to the model. Details of the physical
- digital coupling and the framework of the CDP can
be read in the following publications: Schubert et al.
2011b, Schubert et al. 2013, Schubert 2014.

VPL / Visual Programming Language

In order to meet the changing requirements of dif-
ferent building tasks and, to enable the different user
groups to make individual adaptations, a visual pro-
gramming language (VPL) and an accompanying in-
tegrated development environment (IDE) have been
conceptualised and implemented. The choice to cre-

Middleware

Database and libraries for plugins
Basic functionality (open, navigation ...)

Provision of functions

Plugin registration

Semantic environment model (City GML / Openstreetmap)
3D data from the design (Kinect)

Interface

Gesture recognition

Marker recognition

Input
HCI + Data

Oracle DB WolframAlpha 3D scanner Gestures Pen

City GML

518 | eCAADe 35 - CITY MODELLING TOOLS - Volume 1

Marker IFC (incl. versioning) Display

ate anew VPLis based on the traditional user-friendly
interface and the minimal technical knowledge re-
quired to program with such languages (Hils 1992).
To fulfill the requirement of real-time interactability
with the simulations the IDE uses the VPL as an inter-
preted language, which trades the compilation and
the associated performance gain for a fluid, unin-
terrupted user interaction. This also offers an eas-
ier reusability of simulations and higher productivity
from the user (Ousterhout 1998). This solution serves
as an add-on to the main framework (see Figure 2).
The language and IDE have as a primary goal to cir-
cumvent the existing development process of sim-
ulations for the CDP (Schubert et al. 2011a), which
requires not only in-depth knowledge of the imple-
mentation of the framework but also has to be re-
compiled every time a modification is made to the
code.

VPL // Visual Programming Language

Simulation and analysis tools
Uses data from Middleware for calculation

Functions

Check-in to Middleware
Simulation and analysis calculations
Transfer of render-results to Middleware

Output

Visual + Data

Immersive
GIT Presentation

Figure 2

Software
Framework: Build
up on a Plugin
Framework, the VPL
is directly included
in the
main-application

Figure 3

Sample node
layout: (I) Input
connection, (O)
Output connection,
(L) Loop Trigger, (V)
visibility. The node
itself can be used
for static input e.g.
via Buttons,
Checkboxes or
Input-fields.

Figure 4

Loop Node:
Increments a
counter that has a
start and step value
each time cycle.
Alternative
executes nodes in
the Loop box each
time cycle.

To fulfil the preconditions of the creative design
phases and the limitations of the framework, the fol-
lowing requirements were determined:

+ programming operations are represented by
nodes (see Figure 3), which have different in-
puts, outputs and control values.

every change in the input of nodes, or the pro-

vided context of the CDP, is processed and vi-

sualised in real-time, without having to inter-

rupt the design process.

« the interface is designed to offer architects,
familiar with Grasshopper or similar applica-
tions, a recognisable layout

+ the VPL and IDE are extensible, the devel-
opment of further nodes or features requires
minimal extra effort.

TECHNICAL REALISATION

The IDE implements an Interface of the CDP. This of-
fers an easier integration of the IDE as a pseudo sim-
ulation plugin for the framework. Through the inter-
face, the IDE has direct access to all events, informa-
tion and interactions on the main framework. For the
visualization of the environment the Windows Pre-
sentation Foundation (WPF) is used.

Each syntax component of the VPL utilizes a main
Interface that enables the easier interpretation and
interaction between each other. These syntax com-
ponents are then visualised by so-called Node visual
elements in the IDE. Each Node contains a Grid El-
ement in which all further syntax specification are
placed. These specifications can be easily repre-
sented through traditional User Interface (Ul) Ele-
ments like buttons, sliders, check boxes, etc. To ex-
change information between each Node we use a
set of input/output connectors that exchange infor-
mation. How that information is interpreted, uti-
lized and stored is left to the implementation of each
Node.

If we want a syntax component to react to a
change or interaction in the framework or have ac-
cess to some information, e.g. building information,

then they implement one or more of the six available
sub-interfaces. Each node implementing them will
be called from the IDE when a specific event is sent
through the Framework Pipeline.

Pr—

Sample Node

Input 1 Button 1 Output 1 o

Input 2 Output 2 ©)

Input3 Button 2 Checkbox

Although the environment mimics functionalities of
similar programs, it also offers a variety of features
that are unique for the needs of the project. Five of
the currently 35 implemented components are de-
scribed in detail. (see Figure 4)

Loop

(OX0) 1.0 100
start step ms/loop

Transform
& °

° e»

X0 1
Y 10 1
Z0 1

CITY MODELLING TOOLS - Volume 1 - eCAADe 35 | 519

Loop Node

The node starts a timer that increments a counter
each loop cycle. By defining the step value, a user can
define the increments with which the counter will in-
crease. The ms/loop value specifies how often this
will happen in milliseconds. The current value of the
counter is then given as an output. Alternatively, it
is possible to bind other nodes, that will be executed
every cycle of the loop.

Sun Node

This node is an example of how a whole simulation
can be represented as a single node. It uses all geo-
objects sent to this project from the core framework.
The user can specify the geographical position of the
objects and the time and date for which it should
compute the shadows. (see Figure 5)

520 | eCAADe 35 - CITY MODELLING TOOLS - Volume 1

Additionally if the user wants to see how the shad-
ows change throughout the day in real-time, they can
add an input that represents how many minutes have
passed since the specified point. To visualise the sim-
ulation the node provides two outputs, one for the
shadows and one for light colour. (see Figure 6)

Rasteriser and Grid Node

The grid node takes any geo-object and generates
2D points that are inside of the surface of the ob-
ject. The spacing value defines the exact distance be-
tween two points.

A= T
Grid

. Geo objects 2D Grid .

Spacing |10

/

Rasterizer
o Input

Cell Corners O

X

Il Border

Cells: 64 40 Flags O
/

Grid Fill

Figure 5

Sun Node:
Computes the
shadows and the
sun light for a given
latitude and
longitude position
and the day of the
year.

Figure 6

Grid Node:
Represents each
object through
points with defined
spacing between
them. Rasterizer
Node: Discretizes
space in X*Y Cells.

Figure 7

Lattice Boltzmann
Node: Simulates
one step of the LBM
using a D2Q9
model with BGK for
collision operation.
A full simulation
can be ran with
extra utilization of
the Loop Node.

Figure 8

Script Node:
Compiles and
executes C# code
with user defined
amount of inputs
and outputs

Lattice Boltzmann

X Density @

v

Source
Type
Viscocisty

SoundPower

The rasteriser node performs two sets of operations.
Firstit discretises the screen space based on the xand
y value. Then it takes the provided set of 2D points
and marks each cell that contains at least one point
as full. Because most types of simulation that use
a discretisation of space have boundary conditions,
the user can request, that all cells lying on the border
of the screen domain are marked as such and over-
ride the previous check. It provides an output of two
equally sized sets that contain the screen coordinates
for the top left corner of each cell and what type of
cell it is. The rasteriser node also provides a set of vi-
sualisation options. The grid option shows the size
of each cell, while the fill function shows which cells
would be marked as empty/full. (see Figure 7)

Lattice Boltzmann Node
The Lattice Boltzmann Node implements the identi-
cally titled method from the computational fluid dy-

namics field. It uses a D2Q9 model for the discretiza-
tion of the velocity and space (He and Zou 1997) and
the Bhantnagar-Gross-Krook model (Bhatnagar et al.
1954) for its collision operator. It assumes that all
sources of disturbance are based on increased pres-
sure, and can be defined by the SoundPower input
value. The Viscocisty input can control the type of
substance that are simulated. The Source and Type
inputs are bitmasks that define for each cell if it is a
solid, fluid or border and independent of that if the
cell is a source of disturbance to the simulation. The
two bitmasks should have the same size as the prod-
uct of the X and Y inputs, that define the discretiza-
tion in 2D. The output is the result of one iteration
of the simulation represented through the density of
each cell.

Object0 : Object0 : [2=

Object1:

ctions.Generic;

public clas:
(

tName : Scriptinterfac pt

public List<object> Run(List<object> parameters)

Script Node

The script node provides the user with an option to
create their own “mini-programs” that they can exe-
cute as part of their simulation. The node takes the in-
put, output and source code, written in C#, and com-
piles a small library that it then executes with the pa-
rameters provided by the user. With this node, the
user can define complex mathematical operations
and simulations without having to extend the core
framework or the project. Continues real-time use

CITY MODELLING TOOLS - Volume 1 - eCAADe 35 | 521

can be achieved by linking it with a Loop Node. (see
Figure 8)

SUMMARY

Within the framework of the project shown here,
an interactive, visual programming interface was de-
signed and implemented on top of the existing CDP
// Collaborative Design Platform. The implemented
prototype clearly demonstrates the potential of an
iconic, visual programming interface for the creation
and also for the adaptation of digital analyses and
simulations. The implementation as a reactive com-
puting software is of particular importance here and
allows direct feedback from the visual programming
interface. The direct coupling to a tangible interface
expands the use of the CDP // Collaborative Design
Platform enormously and enables laymen (such as
stakeholders, authorities, etc.) to be directly involved
in the planning process, taking into account objec-
tive criteria. First applications e.g. noise simulations,
and shading analyses show the potentials as well as
new fields of application.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the develop-
ment support by Alejandro Segura Rueda and Fabian
Frank Petter for the co-development of the VPL and
IDE as part of their master course.

REFERENCES

Bhatnagar, PL, Gross, EP and Krook, M 1954, 'A Model for
Collision Processes in Gases. |. Small Amplitude Pro-
cesses in Charged and Neutral One-Component Sys-
tems, Physical Review, 94(3), pp. 511-525

He, X and Zou, Q 1997, 'Theory of the lattice Boltzmann
method: From the Boltzmann equation to the lat-
tice Boltzmann equation; Physical Review E, 56(6), p.
6811

Hils, DD 1992, 'Visual Languages and Computing Survey:
Data Flow Visual Programming Languages; Journal
of Visual Languages and Computing, 3, pp. 69-101

Kensek, K 2015, 'Visual Programming for building infor-
mation modeling: energy and shading analysis case
studies; Journal of Green Building, 10(4), pp. 28-43

522 | eCAADe 35 - CITY MODELLING TOOLS - Volume 1

Ousterhout, JK 1998, ‘Scripting: higher level program-
ming for the 21st Century, Computer, 31(3), pp. 23-
30

Preidel, Cand Borrmann, A 2015 ‘Automated Code Com-
pliance Checking Based on a Visual Language and
Building Information Modeling, Proceedings of the
32nd ISARC, Oulu, Finland

Schubert, G 2014, Interaction forms for digital design:
a concept and prototype for a computer-aided de-
sign platform for urban architectural design scenarios,
Ph.D. Thesis, Technical University of Munich

Schubert, G, Artinger, E, Petzold, F and Klinker, G 2011a
‘Tangible tools for architectural design - seamless in-
tegration into the architectural workflow; Proceed-
ings of the 31st Annual Conference of the Association
for Computer Aided Design in Architecture, Banff, pp.
252-259

Schubert, G, Artinger, E, Petzold, F and Klinker, G 2011b
‘Bridging the Gap. A (Collaborative) Design Platform
for early design stages; Proceedings of eCAADe 2011,
Ljubljana, Slovenien, pp. 187-193

Schubert, G, Riedel, S and Petzold, F 2013 'Seamfully con-
nected | Real working models as tangible interfaces
for architectural design; Proceedings of CAAD Futures
2013, Shanghai, pp. 210-221

Seifert, N and Miihlhaus, M 2014 'Decision support for
inner-city development — An interactive customiz-
able environment for decision-making processes in
urban planning; Proceedings of eCAADe 2014, New-
castle, UK, pp. 43-52

[1] http://www.grasshopper3d.com/

[2] http://dynamobim.org/

